Publications by authors named "E P Patallo"

Membrane proteins can be examined in near-native lipid-bilayer environments with the advent of polymer-encapsulated nanodiscs. These nanodiscs self-assemble directly from cellular membranes, allowing in vitro probing of membrane proteins with techniques that have previously been restricted to soluble or detergent-solubilized proteins. Often, however, the high charge densities of existing polymers obstruct bioanalytical and preparative techniques.

View Article and Find Full Text PDF

Amphiphilic agents, called detergents, are invaluable tools for studying membrane proteins. However, membrane proteins encapsulated by conventional head-to-tail detergents tend to denature or aggregate, necessitating the development of structurally distinct molecules with improved efficacy. Here, a novel class of diastereomeric detergents with a cyclopentane core unit, designated cyclopentane-based maltosides (CPMs), were prepared and evaluated for their ability to solubilize and stabilize several model membrane proteins.

View Article and Find Full Text PDF

During the last years halogenated compounds have drawn a lot of attention. Metabolites with one or more halogen atoms are often more active than their non-halogenated derivatives like indole-3-acetic acid (IAA) and 4-Cl-IAA. Within this work, bacterial flavin-dependent tryptophan halogenase genes were inserted into Brassica rapa ssp.

View Article and Find Full Text PDF

In Streptomyces albogriseolus the indolethiophen alkaloid thienodolin is derived from tryptophan. The first step in thienodolin biosynthesis is the regioselective chlorination of tryptophan in the 6-position of the indole ring. The second step is catalyzed by the aminotransferase ThdN.

View Article and Find Full Text PDF

The application of flavin-dependent halogenases is hampered by their lack of stability under reaction conditions. However, first attempts to improve halogenase stability by error-prone PCR have resulted in mutants with higher temperature stability. To facilitate the screening for mutants with higher activity, a high-throughput assay was developed.

View Article and Find Full Text PDF