Mitochondrial abnormalities underscore a variety of neurologic injuries and diseases and are well-studied in adult populations. Clinical studies identify critical roles of mitochondria in a wide range of developmental brain injuries, but models that capture mitochondrial abnormalities in systems representative of the neonatal brain environment are lacking. Here, we develop an organotypic whole-hemisphere (OWH) brain slice model of mitochondrial dysfunction in the neonatal brain.
View Article and Find Full Text PDFBackground: There is significant interest in isolating cells of the blood-brain barrier (BBB) for use in in vitro screening of therapeutics and analyzing cell specific roles in neurovascular pathology. Primary brain cells play an advantageous role in BBB models; however, isolation procedures often do not produce cells at high enough yields for experiments. In addition, although numerous reports provide primary cell isolation methods, the field is lacking in documentation and detail of expected morphological changes that occur throughout culturing and there are minimal troubleshooting resources.
View Article and Find Full Text PDFWe evaluated the use of the Product Enhanced Reverse Transcriptase (PERT) assay as a means of detecting virus in retroviral vectors products pseudotyped with Gibbon Ape Leukemia Virus (GALV) and Vesicular Stomatitis Virus G (VSVG) envelopes. PERT provides greater standardization than the S+/L- assay which has been used extensively in virus detection. A challenge is that PERT will also detect residual retroviral vectors as vector particles contain reverse transcriptase.
View Article and Find Full Text PDFHO is a key oxidant in mammalian biology and a pleiotropic signaling molecule at the physiological level, and its excessive accumulation in conjunction with decreased cellular reduction capacity is often found to be a common pathological marker. Here, we present a red fluorescent Genetically Encoded HO Indicator (GEHI) allowing versatile optogenetic dissection of redox biology. Our new GEHI, oROS-HT, is a chemigenetic sensor utilizing a HaloTag and Janelia Fluor (JF) rhodamine dye as fluorescent reporters.
View Article and Find Full Text PDF