We present a realization of a magnetic sensor based on electromagnetically induced transparency (EIT) resonances observed in hot Rb vapor using lin∥lin polarized dichromatic light and evaluate scalar and vector capabilities of the sensor for measuring Earth-like magnetic fields. We demonstrate scalar measurement sensitivity of 2 / in the 1-100 Hz spectral frequency band using a ~1 cm Rb vapor cell, significantly improving the performance for such a configuration if compared with earlier measurements of large magnetic fields. By using a single linearly polarized dichromatic optical field, we are also able to determine the direction of the magnetic field with respect to the light propagation direction and polarization, taking advantage of the symmetries of the interaction scheme.
View Article and Find Full Text PDFThe etiological factor of cerebral ischemia in the vast majority of cases is vascular embolism. In the present study we investigated embolism caused by atmospheric air bubbles injected into the internal carotid artery of conscious rats. Immediately after embolism modeling, behavioral abnormalities were observed in the animals, and after 24 h, foci of brain damage were detected.
View Article and Find Full Text PDFBackground And Aim: Mastitis is recognized as the most common disease in cattle and causes economic losses in the dairy industry. A number of opportunistic bacterial taxa have been identified as causative agents for this disease. Conventionally, antibiotics are used to treat mastitis; however, most bacteria are resistant to the majority of antibiotics.
View Article and Find Full Text PDFOptical magnetometers based on electromagnetically induced transparency (EIT) in atomic vapor can in principle achieve outstanding sensitivity and accuracy in a small volume. Up until now, however, the predicted fundamental quantum-noise-limited sensitivity has not been achieved in practice due to various technical limitations associated with the measurement apparatus. Here we analyze these restrictions and propose viable mitigation strategies for performance optimization.
View Article and Find Full Text PDFUrban railway vehicles are important means of transport in towns and cities due to their high capacity, power source, and low running resistance, which make them efficient for operation. Although these properties are considered advantages, there is still room for improvement in their operational efficiency. The main objective of this article is to investigate the impact of railway wheel design on the level of kinematic running resistance, which is expressed as the amount of mechanical energy losses during the interaction of wheels with rails.
View Article and Find Full Text PDF