Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. We present a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects.
View Article and Find Full Text PDFThe ratio of temporally adjacent lidar pulse returns is commonly used in differential absorption lidar (DIAL) to reduce correlated noise. These pulses typically are generated at different wavelengths with the assumption that the dominant noise is common to both. This is not the case when the mean number of laser speckle integrated per pulse by the lidar receiver is small (namely, less than 10 speckles at each wavelength).
View Article and Find Full Text PDFA pulsed, dual CO(2) laser lidar was used to measure return signal statistics as a function of the number of speckles integrated by the lidar receiver per laser pulse. A rotating target generated statistically independent speckle patterns on each laser pulse. Data were collected for a wide range of receiver aperture sizes.
View Article and Find Full Text PDF