Integrated modelocked lasers with high power are of utmost importance for next generation optical systems that can be field-deployable and mass produced. Here we study fully integrated modelocked laser designs that have the potential to generate ultrashort, high power, and high quality pulses. We explore a large mode area laser for high power pulse generation and study the various mode-locking regimes of dispersion managed soliton pulses in net anomalous and net normal dispersion cavities.
View Article and Find Full Text PDFOptical frequency synthesizers have widespread applications in optical spectroscopy, frequency metrology, and many other fields. However, their applicability is currently limited by size, cost, and power consumption. Silicon photonics technology, which is compatible with complementary-metal-oxide-semiconductor fabrication processes, provides a low-cost, compact size, lightweight, and low-power-consumption solution.
View Article and Find Full Text PDFAbility to selectively enhance the amplitude and maintain high coherence of the supercontinuum signal with long pulses is gaining significance. In this work, an extra degree of freedom afforded by varying the dispersion profile of a waveguide is utilized to selectively enhance supercontinuum. As much as 16 dB signal enhancement in the telecom window and 100 nm of wavelength extension is achieved with a cascaded waveguide, compared to a fixed dispersion waveguide.
View Article and Find Full Text PDFWe present a CMOS-compatible, Q-switched mode-locked integrated laser operating at 1.9 µm with a compact footprint of 23.6 × 0.
View Article and Find Full Text PDFMany optical systems require broadband filters with sharp roll-offs for efficiently splitting or combining light across wide spectra. While free space dichroic filters can provide broadband selectivity, on-chip integration of these high-performance filters is crucial for the scalability of photonic applications in multi-octave interferometry, spectroscopy, and wideband wavelength-division multiplexing. Here we present the theory, design, and experimental characterization of integrated, transmissive, 1 × 2 port dichroic filters using spectrally selective waveguides.
View Article and Find Full Text PDF