Publications by authors named "E P Ficaro"

Article Synopsis
  • Researchers developed a deep-learning algorithm (3D U-Net) to automate myocardial segmentation in FDG PET scans for diagnosing cardiac sarcoidosis, improving efficiency and accuracy in analysis.
  • The algorithm was trained on data from 316 patients and showed better readability and performance compared to standard automatic methods, especially in measuring left ventricle displacement and SUVmax correlation.
  • Overall, the new tool enhances the processing of FDG PET datasets, significantly reducing manual processing time while maintaining or improving output quality with minimal user intervention.
View Article and Find Full Text PDF

Background: Fluorodeoxyglucose positron emission tomography (FDG PET) with glycolytic metabolism suppression plays a pivotal role in diagnosing cardiac sarcoidosis. Reorientation of images to match perfusion datasets is critical and myocardial segmentation enables consistent image scaling and quantification. However, both are challenging and labor intensive.

View Article and Find Full Text PDF

Although deep learning methods have shown great promise for identification of structural and functional cardiac abnormalities using electrocardiographic data, these methods are data hungry, posing a challenge for critically important tasks where ground truth labels are relatively scarce. Impaired coronary microvascular and vasomotor function is difficult to identify with standard clinical methods of cardiovascular testing such as coronary angiography and noninvasive single photon emission tomography (SPECT) myocardial perfusion imaging (MPI). Gold standard data from positron emission tomography (PET) are gaining emphasis in clinical guidelines but are expensive and only available in relatively limited centers.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to differentiate between obstructive coronary artery disease (CAD) and conditions like microvascular dysfunction using a new measurement called integrated myocardial flow reserve (iMFR).
  • Researchers analyzed data from over 1,200 patients undergoing myocardial perfusion imaging and validated their findings against invasive coronary angiography.
  • Results indicate that iMFR improves diagnostic accuracy for obstructive CAD, particularly in cases of focally impaired perfusion, while diffusely impaired perfusion may suggest a lower risk of obstructive CAD.
View Article and Find Full Text PDF