Introduction: Treatment with Sunitinib, a potent multitargeted receptor tyrosine kinase inhibitor (TKI) has increased the progression-free survival (PFS) and overall-survival (OS) of patients with metastasized renal cell carcinoma (mRCC). With modest OS improvement and variable response and toxicity predictive and/or prognostic biomarkers are needed to personalize patient management: Prediction of individual TKI therapy response and resistance will increase successful treatment outcome while reducing unnecessary drug use and expense. The aim of this study was to investigate whether kinase activity analysis can predict sunitinib response and/or toxicity using tissue samples obtained from primary clear cell RCC (ccRCC) from a cohort of clinically annotated patients with mRCC receiving sunitinib as first-line treatment.
View Article and Find Full Text PDFTracheal tissue engineering is still facing major challenges: realization of efficient vascularization and mechanical properties comparable to native trachea need to be achieved. In this study, we present a strategy for the manufacturing of a construct for tracheal tissue engineering by conditioning through cell seeding followed by mechanical stimulation in vitro. Scaffolds derived from porcine trachea decellularized with supercritical carbon dioxide were seeded with stem cells of different tissue sources and cultured in a bioreactor for 21 days under mechanical stimulation.
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICI) are routinely used in advanced clear cell renal cell carcinoma (ccRCC). However, a substantial group of patients does not respond to ICI therapy. Radiation is a promising approach to increase ICI response rates since it can generate anti-tumor immunity.
View Article and Find Full Text PDFWith its involvement in cell proliferation, migration and differentiation basic fibroblast growth factor (bFGF) has great potential for tissue engineering purposes. So far, however, clinical translation of soluble bFGF-based therapies is unsuccessful, because the required effective doses are often supraphysiological, which may cause adverse effects. An effective solution is growth factor immobilization, whereby bFGF retains its bioactivity at increased efficacy.
View Article and Find Full Text PDFStromal vascular fraction (SVF) is the primary isolate obtained after enzymatic digestion of adipose tissue that contains various cell types. Its successful application for cell-based construct preparation in an intra-operative setting for clinical bone augmentation and regeneration has been previously reported. However, the performance of SVF-based constructs compared with traditional expanded adipose tissue-derived mesenchymal stromal cells (ATMSCs) remains unclear and direct comparative analyses are scarce.
View Article and Find Full Text PDF