Migration's impact spans various social dimensions, including demography, sustainability, politics, economy, and gender disparities. Yet, the decision-making process behind migrants choosing their destination remains elusive. Existing models primarily rely on population size and travel distance to explain the spatial patterns of migration flows, overlooking significant population heterogeneities.
View Article and Find Full Text PDFEstimating how many people are food insecure and where they are is of fundamental importance for governments and humanitarian organizations to make informed and timely decisions on relevant policies and programmes. In this study, we propose a machine learning approach to predict the prevalence of people with insufficient food consumption and of people using crisis or above-crisis food-based coping when primary data are not available. Making use of a unique global dataset, the proposed models can explain up to 81% of the variation in insufficient food consumption and up to 73% of the variation in crisis or above food-based coping levels.
View Article and Find Full Text PDFFood insecurity, defined as the lack of physical or economic access to safe, nutritious and sufficient food, remains one of the main challenges included in the 2030 Agenda for Sustainable Development. Near real-time data on the food insecurity situation collected by international organizations such as the World Food Programme can be crucial to monitor and forecast time trends of insufficient food consumption levels in countries at risk. Here, using food consumption observations in combination with secondary data on conflict, extreme weather events and economic shocks, we build a forecasting model based on gradient boosted regression trees to create predictions on the evolution of insufficient food consumption trends up to 30 days in to the future in 6 countries (Burkina Faso, Cameroon, Mali, Nigeria, Syria and Yemen).
View Article and Find Full Text PDF