Publications by authors named "E Olejniczak"

Myeloid cell leukemia 1 (Mcl-1) is a key regulator of the intrinsic apoptosis pathway. Overexpression of Mcl-1 is correlated with high tumor grade, poor survival, and both intrinsic and acquired resistance to cancer therapies. Herein, we disclose the structure-guided design of a small molecule Mcl-1 inhibitor, compound , that binds to Mcl-1 with subnanomolar affinity, inhibits growth in cell culture assays, and possesses low clearance in mouse and dog pharmacokinetic (PK) experiments.

View Article and Find Full Text PDF

The chromatin-associated protein WDR5 is a promising pharmacological target in cancer, with most drug discovery efforts directed against an arginine-binding cavity in WDR5 called the WIN site. Despite a clear expectation that WIN site inhibitors will alter the repertoire of WDR5 interaction partners, their impact on the WDR5 interactome remains unknown. Here, we use quantitative proteomics to delineate how the WDR5 interactome is changed by WIN site inhibition.

View Article and Find Full Text PDF
Article Synopsis
  • The nucleotide exchange factor SOS plays a key role in activating RAS by switching it from an inactive GDP-bound state to an active GTP-bound state.
  • Recently discovered small-molecule allosteric activators of SOS1 can enhance RAS-GTP levels in cells and inhibit ERK phosphorylation at higher concentrations through a feedback mechanism.
  • Further research involved using NMR-based fragment screening and structure-based design to create improved compounds that boost SOS1 activity on RAS and align with earlier findings.
View Article and Find Full Text PDF

The frequent deregulation of MYC and its elevated expression via multiple mechanisms drives cells to a tumorigenic state. Indeed, MYC is overexpressed in up to ∼50% of human cancers and is considered a highly validated anticancer target. Recently, we discovered that WD repeat-containing protein 5 (WDR5) binds to MYC and is a critical cofactor required for the recruitment of MYC to its target genes and reported the first small molecule inhibitors of the WDR5-MYC interaction using structure-based design.

View Article and Find Full Text PDF

KLHL-12 is a substrate specific adapter protein for a Cul3-Ring ligase complex. It is a member of the Kelch β-propeller domain subclass of Cullin-Ring substrate recognition domains. This E3 ubiquitin ligase complex has many activities, including acting as a negative regulator of the Wnt signaling pathway by mediating ubiquitination and subsequent proteolysis of Dvl3/Dsh3.

View Article and Find Full Text PDF