Publications by authors named "E Okuda-Ashitaka"

We demonstrated previously that sorting nexin 25 (SNX25) in nerve-associated macrophages plays critical roles in pain sensation by regulating tissue NGF content under both physiological and neuropathic conditions. In the present study, we apply the SNX25-NGF paradigm to tactile perception by showing that Snx25 mice or macrophage-specific Snx25 conditional knock-out (mcKO) mice had weaker responses to tactile stimuli in normal conditions. Snx25 mcKO mice responded poorly to transcutaneous electrical stimuli at a frequency of 5 Hz (C fiber responses), but normally to stimuli at a frequency of 250 Hz (Aδ fiber responses) or of 2000 Hz (Aβ fiber responses).

View Article and Find Full Text PDF
Article Synopsis
  • - Increased lactate levels from glycolysis are being studied as potential markers for metabolic changes in neurons, linked to a drop in brain pH, which has been associated with various neuropsychiatric disorders like schizophrenia and autism.
  • - Research shows that these pH and lactate changes are common across different animal models, including those for depression, epilepsy, and Alzheimer's disease, though findings vary, particularly within the autism spectrum.
  • - A large-scale analysis indicated that higher lactate levels correlate with worse working memory performance, suggesting that altered brain chemistry might reflect underlying conditions across multiple disorders.
View Article and Find Full Text PDF

Deficiency of an extracellular matrix glycoprotein tenascin-X (TNX) leads to a human heritable disorder Ehlers-Danlos syndrome, and TNX-deficient patients complain of chronic joint pain, myalgia, paresthesia, and axonal polyneuropathy. We previously reported that TNX-deficient (Tnxb) mice exhibit mechanical allodynia and hypersensitivity to myelinated A-fibers. Here, we investigated the pain response of Tnxb mice using pharmacological silencing of A-fibers with co-injection of N-(2,6-Dimethylphenylcarbamoylmethyl) triethylammonium bromide (QX-314), a membrane-impermeable lidocaine analog, plus flagellin, a toll-like receptor 5 (TLR5) ligand.

View Article and Find Full Text PDF

Tenascin-X (TNX) is an extracellular matrix glycoprotein for which a deficiency results in a recessive form of classical-like Ehlers-Danlos syndrome (clEDS), a heritable connective tissue disorder with hyperextensible skin without atrophic scarring, joint hypermobility, and easy bruising. Notably, patients with clEDS also suffer from not only chronic joint pain and chronic myalgia but also neurological abnormalities such as peripheral paresthesia and axonal polyneuropathy with high frequency. By using TNX-deficient ( ) mice, well-known as a model animal of clEDS, we recently showed that mice exhibit hypersensitivity to chemical stimuli and the development of mechanical allodynia due to the hypersensitization of myelinated A-fibers and activation of the spinal dorsal horn.

View Article and Find Full Text PDF

Nucleophosmin 1 (NPM1) primarily localizes to the nucleus and is passively released into the extracellular milieu by necrotic or damaged cells, or is secreted by monocytes and macrophages. Extracellular NPM1 acts as a potent inflammatory stimulator by promoting cytokine production [e.g.

View Article and Find Full Text PDF