A database search of the sequences flanking a member of rice retrotransposon RIRE7 revealed that a 298-bp sequence in the region downstream of the member is a repetitive sequence interspersed in the genome of Oryza sativa cv. Nipponbare. Most of the repetitive sequences were flanked by a direct repeat of a target-site sequence, about 14 bp in length.
View Article and Find Full Text PDFOryza rufipogon, the progenitor of the cultivated rice species Oryza sativa, is known by its wide intraspecific variation. In this study, we performed phylogenetic analyses of O. rufipogon strains and their relationships to O.
View Article and Find Full Text PDFWith the goal of solving the whole-cell problem with Escherichia coli K-12 as a model cell, highly accurate genomes were determined for two closely related K-12 strains, MG1655 and W3110. Completion of the W3110 genome and comparison with the MG1655 genome revealed differences at 267 sites, including 251 sites with short, mostly single-nucleotide, insertions or deletions (indels) or base substitutions (totaling 358 nucleotides), in addition to 13 sites with an insertion sequence element or defective prophage in only one strain and two sites for the W3110 inversion. Direct DNA sequencing of PCR products for the 251 regions with short indel and base disparities revealed that only eight sites are true differences.
View Article and Find Full Text PDFBotulinum neurotoxins (BoNTXs) produced by Clostridium botulinum are among the most poisonous substances known. Of the seven types of BoNTXs, genes for type C1 and D toxins (BoNTX/C1 and D) are carried by bacteriophages. The gene for exoenzyme C3 also resides on these phages.
View Article and Find Full Text PDFp-SINE1 was the first plant SINE element identified in the Waxy gene in Oryza sativa, and since then a large number of p-SINE1-family members have been identified from rice species with the AA or non-AA genome. In this paper, we report two new rice SINE elements, designated p-SINE2 and p-SINE3, which form distinct families from that of p-SINE1. Each of the two new elements is significantly homologous to p-SINE1 in their 5'-end regions with that of the polymerase III promoter (A box and B box), but not significantly homologous in the 3'-end regions, although they all have a T-rich tail at the 3' terminus.
View Article and Find Full Text PDF