Background: Cryopyrin-associated periodic syndromes (CAPS) are a group of autoinflammatory diseases linked to gain-of-function mutations in the NOD-like receptor family, pyrin domain containing 3 (NLRP3) gene, which cause uncontrolled IL-1β secretion. Proton pump inhibitors (PPIs), which are commonly used as inhibitors of gastric acid production, also have anti-inflammatory properties, protect mice from sepsis, and prevent IL-1β secretion by monocytes from patients with CAPS.
Objective: We sought to develop a novel Nlrp3 knock-in (KI) mouse model of CAPS to study amyloidosis, a severe CAPS complication, and test novel therapeutic approaches.
Interleukin (IL)-25, a member of the IL-17 cytokine superfamily, is produced by immune and non-immune cells and exerts type 2 pro-inflammatory effects and . The IL-25 receptor(R) is composed of the IL-17RA/IL-17RB subunits. Previous work showed that germinal centre (GC)-derived B-cell non Hodgkin lymphomas (B-NHL) expressed IL-17AR, formed by IL-17RA and IL-17RC subunits, and IL-17A/IL-17AR axis promoted B-NHL growth by stimulating neoangiogenesis.
View Article and Find Full Text PDFWe used immunodeficient mice, whose dorsomedial olfactory region was permanently damaged by dichlobenil inoculation, to test the neuroregenerative properties of transplanted human adipose tissue-derived stem cells after 30 and 60 days. Analysis of polymerase chain reaction bands revealed that stem cells preferentially engrafted in the lesioned olfactory epithelium compared with undamaged mucosa of untreated transplanted mice. Although basal cell proliferation in untransplanted lesioned mice did not give rise to neuronal cells in the olfactory mucosa, we observed clusters of differentiating olfactory cells in transplanted mice.
View Article and Find Full Text PDF