Publications by authors named "E Oelker"

Article Synopsis
  • The study investigates compact binary coalescences with at least one component mass between 0.2 and 1.0 solar masses using data from Advanced LIGO and Advanced Virgo detectors over six months in 2019, but they found no significant gravitational wave candidates.
  • The analysis leads to an upper limit on the merger rate of subsolar binaries ranging from 220 to 24,200 Gpc⁻³ yr⁻¹, based on the detected signals’ false alarm rate.
  • The researchers use these limits to set new constraints on two models for subsolar-mass compact objects: primordial black holes (suggesting they make up less than 6% of dark matter) and
View Article and Find Full Text PDF

Einstein's theory of general relativity states that clocks at different gravitational potentials tick at different rates relative to lab coordinates-an effect known as the gravitational redshift. As fundamental probes of space and time, atomic clocks have long served to test this prediction at distance scales from 30 centimetres to thousands of kilometres. Ultimately, clocks will enable the study of the union of general relativity and quantum mechanics once they become sensitive to the finite wavefunction of quantum objects oscillating in curved space-time.

View Article and Find Full Text PDF

Mechanical loss of dielectric mirror coatings sets fundamental limits for both gravitational wave detectors and cavity-stabilized optical local oscillators for atomic clocks. Two approaches are used to determine the mechanical loss: ringdown measurements of the coating quality factor and direct measurement of the coating thermal noise. Here we report a systematic study of the mirror thermal noise at 4, 16, 124, and 300 K by operating reference cavities at these temperatures.

View Article and Find Full Text PDF

The preparation of large, low-entropy, highly coherent ensembles of identical quantum systems is fundamental for many studies in quantum metrology, simulation and information. However, the simultaneous realization of these properties remains a central challenge in quantum science across atomic and condensed-matter systems. Here we leverage the favourable properties of tweezer-trapped alkaline-earth (strontium-88) atoms, and introduce a hybrid approach to tailoring optical potentials that balances scalability, high-fidelity state preparation, site-resolved readout and preservation of atomic coherence.

View Article and Find Full Text PDF

We conduct frequency comparisons between a state-of-the-art strontium optical lattice clock, a cryogenic crystalline silicon cavity, and a hydrogen maser to set new bounds on the coupling of ultralight dark matter to standard model particles and fields in the mass range of 10^{-16}-10^{-21}  eV. The key advantage of this two-part ratio comparison is the differential sensitivity to time variation of both the fine-structure constant and the electron mass, achieving a substantially improved limit on the moduli of ultralight dark matter, particularly at higher masses than typical atomic spectroscopic results. Furthermore, we demonstrate an extension of the search range to even higher masses by use of dynamical decoupling techniques.

View Article and Find Full Text PDF