Obstructive renal diseases affect renal function and kidney integrity. Nevertheless, little is known about its systemic or extra-renal effects. The organic anion transporting polypeptide 1 (Oatp1) is a carrier expressed in liver and kidneys.
View Article and Find Full Text PDFClin Exp Pharmacol Physiol
October 2020
Ureteral obstruction is a relevant cause of kidney damage. The traditional parameters used in clinical practice for the detection of renal injury are insensitive and non-specific for the diagnosis of obstructive renal disease. The organic anion transporter 5 (Oat5) is a carrier expressed exclusively in the kidney.
View Article and Find Full Text PDFRelation between the renal function and the membrane environment where the organic anion transporters Oat1 and Oat3 are localized is scarce. The aim of this study was to examine the Oat1 and Oat3 distribution in different cellular fractions under physiological conditions as well as the effects of extrahepatic cholestasis on membrane distribution of both proteins. Besides, the potential role of jaundice serum on the Oat1 and Oat3 expression in suspensions of renal tubular cells was evaluated.
View Article and Find Full Text PDFCaveolin-2 (Cav-2) is expressed in a variety of cell tissue, and it has also been found in renal tissue. The expression of Cav-2 in proximal tubules is still unclear. The aim of this study was to carry out a complete evaluation of the expression pattern of Cav-2 in rat renal cortex to clarify and deepen the knowledge about the localization of Cav-2 in the proximal tubules and also to evaluate its presence in urine.
View Article and Find Full Text PDFObstructive nephropathy is characterized by alterations in renal function that depends on the degree and type of obstruction. To increase the knowledge about the physiopathological mechanisms involved in the renal damage associated with bilateral ureteral obstruction (BUO), we studied the renal expression and function (as urinary citrate excretion) of sodium-dependent dicarboxylate cotransporter (NaDC1) in rats. In addition, we evaluated the urinary excretion of NaDC1 as a candidate biomarker for this pathology.
View Article and Find Full Text PDF