Stress contributes to pain sensation by affecting several neural pathways, including mesolimbic-cortical dopamine neurons. Nucleus accumbens, an essential element of the mesolimbic dopaminergic pathway, plays a fundamental role in modulating pain and is differentially influenced by stressful events. Since we previously demonstrated the marked association of intra-NAc dopamine receptors with forced swim stress-evoked analgesia in acute pain state, this research was conducted to consider the contribution of intra-accumbal D1- and D2-like dopamine receptors to modulating effects of exposure to restraint stress in pain-related behaviors during the tail-flick test.
View Article and Find Full Text PDFExposure to aversive stimuli such as stress results in profound analgesia named stress-induced analgesia (SIA). We previously showed that D1- and D2-like dopamine receptors within the nucleus accumbens (NAc) mediated the SIA in chronic pain. Since the neurophysiological mechanisms responsible for the various pain conditions are different, the present study aimed to examine the role of dopamine receptors within the NAc in the forced swim stress (FSS)-induced analgesia in the tail-flick test as an animal model of acute pain.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
April 2021
Although it is well established that diabetes impairs mitochondrial respiratory chain activity, little is known of the effects of intranasal insulin (INI) on the mitochondrial respiratory chain and structure-function of mitoBK channel in diabetes. We have investigated this mechanism in an STZ-induced early type 2 diabetic model. Single ATP-sensitive mitoBK channel activity was considered in diabetic and INI-treated rats using a channel incorporated into the bilayer lipid membrane.
View Article and Find Full Text PDFMitochondrial dysfunction is a hallmark of amyloid-beta (Aβ)-induced neuronal toxicity in Alzheimer's disease (AD). However, the underlying mechanism of how Aβ affects mitochondrial function remains uncertain. Because mitochondrial potassium channels have been involved in several mitochondrial functions including cytoprotection, apoptosis and calcium homeostasis, a study was undertaken to investigate whether the gating behavior of the mitochondrial ATP- and ChTx-insensitive-IbTx-sensitive Ca(2+)-activated potassium channel (mitoBKCa) is altered in a rat model of Aβ neurotoxicity.
View Article and Find Full Text PDFExisting evidence indicates an impairment of mitochondrial functions and alterations in potassium channel activities in diabetes. Because mitochondrial potassium channels have been involved in several mitochondrial functions including cytoprotection, apoptosis and calcium homeostasis, a study was carried out to consider whether the gating behavior of the mitochondrial ATP- and ChTx-insensitive Ca(2+)-activated potassium channel (mitoBKCa) is altered in a streptozotocin (STZ) model of diabetes. Using ion channel incorporation of brain mitochondrial inner membrane into the bilayer lipid membrane, we provide in this work evidence for modifications of the mitoBKCa ion permeation properties with channels from vesicles preparations coming from diabetic rats characterized by a significant decrease in conductance.
View Article and Find Full Text PDF