Background: The endometrium remains a difficult tissue for the analysis of microbiota, mainly due to the low bacterial presence and the sampling procedures. Among its pathologies, endometrial cancer has not yet been completely investigated for its relationship with microbiota composition. In this work, we report on possible correlations between endometrial microbiota dysbiosis and endometrial cancer.
View Article and Find Full Text PDFThe 16S rRNA amplicon-based sequencing approach represents the most common and cost-effective strategy with great potential for microbiome profiling. The use of second-generation sequencing (NGS) technologies has led to protocols based on the amplification of one or a few hypervariable regions, impacting the outcome of the analysis. Nowadays, comparative studies are necessary to assess different amplicon-based approaches, including the full-locus sequencing currently feasible thanks to third-generation sequencing (TGS) technologies.
View Article and Find Full Text PDFThe maintenance of intestinal barrier function is essential for preventing different pathologies, such as the leaky gut syndrome (LGS), which is characterized by the passage of harmful agents, like bacteria, toxins, and viruses, into the bloodstream. Intestinal barrier integrity is controlled by several players, including the gut microbiota. Various molecules, called postbiotics, are released during the natural metabolic activity of the microbiota.
View Article and Find Full Text PDFMicrobial stability of fresh pasta depends on heat treatment, storage temperature, proper preservatives, and atmosphere packaging. This study aimed at improving the microbial quality, safety, and shelf life of fresh pasta using modified atmosphere composition and packaging with or without the addition of bioprotective cultures (, , spp., and ) into semolina.
View Article and Find Full Text PDFTo date several studies address the important role of gut microbiome and its interplay with the human host in the health and disease status. However, the selection of a universal sampling matrix representative of the microbial biodiversity associated with the gastrointestinal (GI) tract, is still challenging. Here we present a study in which, through a deep metabarcoding analysis of the 16S rRNA gene, we compared two sampling matrices, feces (F) and colon washing feces (CWF), in order to evaluate their relative effectiveness and accuracy in representing the complexity of the human gut microbiome.
View Article and Find Full Text PDF