The G12/13 subfamily of heterotrimeric guanine nucleotide binding proteins comprises the α subunits Gα12 and Gα13, which transduce signals for cell growth, cytoskeletal rearrangements, and oncogenic transformation. In an increasing range of cancers, overexpressed Gα12 or Gα13 are implicated in aberrant cell proliferation and/or metastatic invasion. Although Gα12 and Gα13 bind non-redundant sets of effector proteins and participate in unique signalling pathways, the structural features responsible for functional differences between these α subunits are largely unknown.
View Article and Find Full Text PDFBackground: Inorganic arsenic (iAs) is a diabetogen. Interindividual differences in iAs metabolism have been linked to susceptibility to diabetes in iAs-exposed populations. Dietary folate intake has been shown to influence iAs metabolism, but to our knowledge its role in iAs-associated diabetes has not been studied.
View Article and Find Full Text PDFSusceptibility to type-2 diabetes mellitus (DM) is determined, in part, by a variety of environmental factors, including exposure to metals. Heavy metals including inorganic arsenic (iAs), zinc (Zn), manganese (Mn), and cadmium (Cd) have been reported to affect glucose homeostasis or DM risk in population-based and/or laboratory studies. Previous evidence from our lab has shown that iAs can increase DM risk by impairing mitochondrial metabolism, one of the key steps in the regulation of glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells.
View Article and Find Full Text PDFInorganic arsenic (iAs) is an established environmental diabetogen. The link between iAs exposure and diabetes is supported by evidence from adult human cohorts and adult laboratory animals. The contribution of prenatal iAs exposure to the development of diabetes and underlying mechanisms are understudied.
View Article and Find Full Text PDFSurface display libraries (SDL) have predominantly been utilized for the screening of peptides, and single-chain variable IgG fragments, however, the use of SDL for the expression and purification of proteins is gaining interest. Prokaryote SDL express proteins within the periplasm, limiting the application of common screening techniques, such as ELISA and FACS, to assess the viability of recombinant toxin before purification. A previous attempt to express a functional holocyclotoxin-1 (HT1) from the Australian paralysis tick (Ixodes holocyclus) using a prokaryotic system was unsuccessful.
View Article and Find Full Text PDF