On 12 January 2024, Cabo Verde was officially certified by the WHO as a malaria-free country after six consecutive years without local transmission. This study analysed the malaria history of Cabo Verde from 1953 to certification in 2024, highlighted the valuable lessons learned, and discussed challenges for prevention reintroduction. Malaria data from the last 35 years (1988-2022) were analysed using descriptive analyses, and cases were mapped using the USGS National Map Viewer.
View Article and Find Full Text PDFBackground and objectives Antimicrobial resistance (AMR) is a growing global threat, with carbapenemase-producing Enterobacterales (CPEs) representing a critical public health challenge. Rapid and accurate detection of CPEs is essential for controlling fatal bacterial AMR infections. This study evaluated the performance of MacConkey media supplemented with ertapenem (MacErt1 and MacErt2) for the detection of CPEs.
View Article and Find Full Text PDFAccurate species identification of the mosquitoes in the genus is of crucial importance to implement malaria control measures and monitor their effectiveness. We use a previously developed amplicon panel (ANOSPP) that retrieves sequence data from multiple short nuclear loci for any species in the genus. Species assignment is based on comparison of samples to a reference index using -mer distance.
View Article and Find Full Text PDFUrban malaria has become a challenge for most African countries due to urbanization, with increasing population sizes, overcrowding, and movement into cities from rural localities. The rapid expansion of cities with inappropriate water drainage systems, abundance of water storage habitats, coupled with recurrent flooding represents a concern for water-associated vector borne diseases, including malaria. This situation could threaten progress made towards malaria elimination in sub-Saharan countries, including Senegal, where urban malaria has presented as a threat to national elimination gains.
View Article and Find Full Text PDFMosquito-borne diseases like malaria are rising globally, and improved mosquito vector surveillance is needed. Survival of mosquitoes is key for epidemiological monitoring of malaria transmission and evaluation of vector control strategies targeting mosquito longevity, as the risk of pathogen transmission increases with mosquito age. However, the available tools to estimate field mosquito age are often approximate and time-consuming.
View Article and Find Full Text PDF