Publications by authors named "E Nestmann"

LI12542F6, a botanical extract composed of and , was evaluated for mutagenicity in bacteria clastogenicity in mouse bone marrow, acute oral and dermal toxicity in the rat, irritation (dermal, eye) in rabbit, and subacute and subchronic toxicity (28 and 90 days) in the rat. All studies followed standard OECD test protocols, in accordance with the principles of Good Laboratory Practice (GLP). LI12542F6 did not induce mutations in the bacterial assay using and strains, nor did it induce genotoxic effects in erythrocytes from mouse bone marrow.

View Article and Find Full Text PDF

Sucralose is a non-caloric high intensity sweetener that is approved globally for use in foods and beverages. This review provides an updated summary of the literature addressing the safety of use of sucralose. Studies reviewed include chemical characterization and stability, toxicokinetics in animals and humans, assessment of genotoxicity, and animal and human feeding studies.

View Article and Find Full Text PDF

Palmitoylethanolamide (PEA) is a natural fatty acid amide found in a variety of foods, which was initially identified in egg yolk. MicroPEA of defined particle size (0.5-10 m) was evaluated for mutagenicity in for clastogenicity/aneuploidy in cultured human lymphocytes, and for acute and subchronic rodent toxicity in the rat, following standard OECD test protocols, in accordance with Good Laboratory Practice (GLP).

View Article and Find Full Text PDF

Mycotoxins, such as ochratoxin A (OTA), can occur from fungal growth on foods. OTA is considered a possible risk factor for adverse renal effects in humans based on renal tumors in male rats. For risk mitigation, Health Canada proposed maximum limits (MLs) for OTA based largely on a comparative risk assessment conducted by Health Canada (Kuiper-Goodman et al.

View Article and Find Full Text PDF

The threshold of toxicological concern (TTC) concept proposes that an exposure threshold value can be derived for chemicals, below which no significant risk to human health or the environment is expected. This concept goes further than setting acceptable exposure levels for individual chemicals, because it attempts to set a de minimis value for chemicals, including those of unknown toxicity, by taking the chemical's structure or mode of action (MOA) into consideration. This study examines the use of the TTC concern concept for endocrine active substances (EAS) with an estrogenic MOA.

View Article and Find Full Text PDF