The rising prices of fishery derivatives limits their use in aquafeeds. Therefore, other alternatives are used to replace those ingredients. Among them, microalgae are of great interest both as an ingredient and as a potential stabilising agent against lipid oxidation.
View Article and Find Full Text PDFThis paper demonstrates a sequential partitioning method for isolating bioactive compounds from Chrysochromulina rotalis using a polarity gradient, replacing classic and hazardous solvents with greener alternatives. Seventeen solvents were evaluated based on their Hansen solubility parameters and for having a similar polarity to the solvents they would replace, four of which were selected as substitutes in the classic fractionation process. Considering the fatty acid and carotenoid recovery yields obtained for each of the solvents, it has been proposed to replace hexane (HEX), toluene (TOL), dichloromethane (DCM) and n-butanol (BUT) with cyclohexane, chlorobenzene, isobutyl acetate and isoamyl alcohol, respectively.
View Article and Find Full Text PDFThe two main methods for partitioning crude methanolic extract from biomass were compared. The objective was to obtain three enriched fractions containing amphidinols (APDs), carotenoids, and fatty acids. Since the most valuable bioproducts are APDs, their recovery was the principal goal.
View Article and Find Full Text PDFAn amphidinol-prioritized fractioning approach was for the first time developed to isolate multiple specialty metabolites such as amphidinols, carotenoids and fatty acids using the biomass of the marine microalgae Amphidinium carterae. The biomass was produced in a raceway photobioreactor and the exhausted culture media were reused, thus fulfilling sustainability criteria employing a circular economy concept. The integrated bioactive compounds-targeted approach presented here consisted of four steps with which recovery percentages of carotenoids, fatty acids and amphidinols of 97%, 82% and 99 %, respectively, were achieved.
View Article and Find Full Text PDFWe propose to investigate brain electrophysiological alterations associated with Parkinson's disease through a novel adaptive dynamical model of the network of the basal ganglia, the cortex and the thalamus. The model uniquely unifies the influence of dopamine in the regulation of the activity of all basal ganglia nuclei, the self-organised neuronal interdependent activity of basal ganglia-thalamo-cortical circuits and the generation of subcortical background oscillations. Variations in the amount of dopamine produced in the neurons of the substantia nigra pars compacta are key both in the onset of Parkinson's disease and in the basal ganglia action selection.
View Article and Find Full Text PDF