The idea of eliminating noxious metal ions from electronic waste contaminated water has led to the use of the metal adsorbing ability of biological matter. The principle of an ion exchanger of biological origin is the key in exhibiting this metal binding feature of microbial biomass. In this study, dead biomass of was immobilized using sodium alginate and tested as a biosorbent for hexavalent chromium elimination from effluent.
View Article and Find Full Text PDFRapid urbanization and industrialization of anthropogenic activities have exerted immense pressure on the environment. Polyhalogenated organic compounds, especially dioxins and furans are regarded as ubiquitously persistent environmental pollutants in the ecosystem. The recalcitrant nature of dioxins and furans induce toxicity in both humans and wildlife.
View Article and Find Full Text PDFInt J Phytoremediation
December 2017
Chromium(VI) was removed from aqueous solution using sulfuric- and phosphoric-acid-activated Strychnine tree fruit shells (SSTFS and PSTFS) as biosorbents. Effects of various parameters such as adsorbent dose (0.02-0.
View Article and Find Full Text PDFPacked bed column studies were carried out to evaluate the performance of chemically modified adsorbents for the sequestration of hexavalent chromium from synthetic and electroplating industrial effluent. The effects of parameters such as bed height (3-9 cm), inlet flow rate (5-15 mL/min), and influent Cr(VI) concentration (50-200 mg/L) on the percentage removal of Cr(VI) and the adsorption capacity of the adsorbents in a packed bed column were investigated. The breakthrough time increased with increasing bed height and decreased with the increase of inlet flow rate and influent Cr(VI) concentration.
View Article and Find Full Text PDFIn this study, batch removal of hexavalent chromium from aqueous solutions by powdered Colocasia esculenta leaves was investigated. Batch experiments were conducted to study the effects of adsorption of Cr(VI) at different pH values, initial concentrations, agitation speeds, temperatures, and contact times. The biosorbent was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectrometer analysis.
View Article and Find Full Text PDF