Publications by authors named "E N VORONINA"

In this research study, we investigated four strains of that showed promising properties for plant growth. These strains were tested for their ability to mobilize phosphorus and produce ammonium, siderophores, and phytohormones. The strains exhibited different values of PGP traits; however, the analysis of the complete genomes failed to reveal any significant differences in known genes associated with the expression of beneficial plant traits.

View Article and Find Full Text PDF
Article Synopsis
  • The study models the autoionization of water by analyzing the free energy of hydration for key ion species like hydroxide (OH), hydronium (HO), and Zundel (HO) ions, using both bonded and nonbonded interaction models.* -
  • The models accurately reflect quantum mechanical energies to within 1%, allowing for precise calculations of free energies and atomization energies.* -
  • The results indicate that the hydronium ion and its hydrated form, the Eigen cation, are the primary species involved in the autoionization of water, with calculated pH values closely matching experimental data.*
View Article and Find Full Text PDF

Background: Helicobacter pylori (H. pylori) can evade the host's immune response and persist for a long time on the gastric mucosa. T helper (Th) cells appear to be involved in the control of H.

View Article and Find Full Text PDF

Human-induced airway basal cells (hiBCs) derived from human-induced pluripotent stem cells (hiPSCs) offer a promising cell model for studying lung diseases, regenerative medicine, and developing new gene therapy methods. We analyzed existing differentiation protocols and proposed our own protocol for obtaining hiBCs, which involves step-by-step differentiation of hiPSCs into definitive endoderm, anterior foregut endoderm, NKX2.1+ lung progenitors, and cultivation on basal cell medium with subsequent cell sorting using the surface marker CD271 (NGFR).

View Article and Find Full Text PDF

RNA-binding proteins FBF-1 and FBF-2 (FBFs) are required for germline stem cell maintenance and the sperm/oocyte switch in Caenorhabditis elegans, although the mechanisms controlling FBF protein levels remain unknown. We identified an interaction between both FBFs and CSN-5), a component of the constitutive photomorphogenesis 9 (COP9) signalosome best known for its role in regulating protein degradation. Here, we find that the Mpr1/Pad1 N-terminal metalloprotease domain of CSN-5 interacts with the Pumilio and FBF RNA-binding domain of FBFs and the interaction is conserved for human homologs CSN5 and PUM1.

View Article and Find Full Text PDF