The collagen IV (Col-IV) scaffold, the major constituent of the glomerular basement membrane (GBM), is a critical component of the kidney glomerular filtration barrier. In Alport syndrome, affecting millions of people worldwide, over two thousand genetic variants occur in the COL4A3, COL4A4, and COL4A5 genes that encode the Col-IV scaffold. Variants cause loss of scaffold, a suprastructure that tethers macromolecules, from the GBM or assembly of a defective scaffold, causing hematuria in nearly all cases, proteinuria, and often progressive kidney failure.
View Article and Find Full Text PDFCollagen IV is a primordial component of basement membranes, a specialized form of extracellular matrix that enabled multi-cellular epithelial tissues. In mammals, collagen IV assembles from a family of six α-chains (α1 to α6), encoded by six genes (COL4A1 to COL4A6), into three distinct scaffolds: the α121, the α345 and a mixed scaffold containing both α121 and α565. The six mammalian COL4A genes occur in pairs that occur in a head-to-head arrangement on three distinct chromosomes.
View Article and Find Full Text PDFCollagen IV scaffold is a primordial innovation enabling the assembly of a fundamental architectural unit of epithelial tissues-a basement membrane attached to polarized cells. A family of six α-chains (α1 to α6) coassemble into three distinct protomers that form supramolecular scaffolds, noted as collagen IV, collagen IV, and collagen IV. Chloride ions play a pivotal role in scaffold assembly, based on studies of NC1 hexamers from mammalian tissues.
View Article and Find Full Text PDFGnathostome adaptive immunity is defined by the Ag receptors, Igs and TCRs, and the MHC. Cartilaginous fish are the oldest vertebrates with these adaptive hallmarks. We and others have unearthed nonrearranging Ag receptor-like genes in several vertebrates, some of which are encoded in the MHC or in MHC paralogous regions.
View Article and Find Full Text PDFPurpose Of Review: In Alport syndrome, over 1,700 genetic variants in the COL4A3, COL4A4, and COL4A5 genes cause the absence or malfunctioning of the collagen IVα345 scaffold - an essential component of the glomerular basement membrane (GBM). Therapies are limited to treatment with Angiotensin-Converting enzyme (ACE) inhibitors to slow progression of the disease. Here, we review recent progress in therapy development to replace the scaffold or restore its function.
View Article and Find Full Text PDF