Publications by authors named "E N Onyeozili"

The compound 1-octen-3-ol is a strong attractant for some mosquito species. Based on chemical structure, this may be due to a terminal site of unsaturation or high electron density, a structural capability for hydrogen bonding, e.g.

View Article and Find Full Text PDF

Substituted α-alkoxysilanes can be deprotonated by alkyllithium bases and made to undergo Wittig rearrangements to afford the #x0005B;1,4]- and [1,2]-rearranged products in varying ratios. Substitution at the benzylic migrating carbon and/or at the allylic carbon of the allyl moiety impacts the rearrangement reaction, influencing the reactivity as well as the [1,4]-/[1,2]-selectivity. Diastereomeric α-alkoxysilanes show different reactivities with the diastereomer being the more reactive isomer.

View Article and Find Full Text PDF

The compound 1-octen-3-ol is a known attractant of some mosquito species, which has led to the hypothesis that olfactory stimulation by this alkenol may be associated with the following structural elements: a terminal site of unsaturation or high electron density; a structural capability for hydrogen bonding, e.g., -OH, -NH2, NHR, NR2, etc.

View Article and Find Full Text PDF

Ir-catalyzed C-H borylation is found to be compatible with Boc protecting groups. Thus, pyrroles, indoles, and azaindoles can be selectively functionalized at C-H positions beta to N. The Boc group can be removed on thermolysis or left intact during subsequent transformations.

View Article and Find Full Text PDF

alpha-Benzyloxyallylsilane undergoes efficient [1,4]-Wittig rearrangement to generate an enolate intermediate that can be trapped with various electrophiles, thereby providing a new synthetic approach to substituted acylsilanes.

View Article and Find Full Text PDF