Publications by authors named "E N Flindt"

Hundreds of thousands of human genomes are now being sequenced to characterize genetic variation and use this information to augment association mapping studies of complex disorders and other phenotypic traits. Genetic variation is identified mainly by mapping short reads to the reference genome or by performing local assembly. However, these approaches are biased against discovery of structural variants and variation in the more complex parts of the genome.

View Article and Find Full Text PDF

Full agonists to the peroxisome proliferator-activated receptor (PPAR)γ, such as Rosiglitazone, have been associated with a series of undesired side effects, such as weight gain, fluid retention, cardiac hypertrophy, and hepatotoxicity. Nevertheless, PPARγ is involved in the expression of genes that control glucose and lipid metabolism and is an important target for drugs against type 2 diabetes, dyslipidemia, atherosclerosis, and cardiovascular disease. In an effort to identify novel PPARγ ligands with an improved pharmacological profile, emphasis has shifted to selective ligands with partial agonist binding properties.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptors (PPARs) are important targets for drugs used in the treatment of atherosclerosis, dyslipidaemia, obesity, type 2 diabetes, and other diseases caused by abnormal regulation of the glucose and lipid metabolism. We applied a virtual screening workflow based on a combination of pharmacophore modeling with 3D shape and electrostatic similarity screening techniques to discover novel scaffolds for PPAR ligands. From the resulting 10 virtual screening hits, five tested positive in human PPAR ligand-binding domain (hPPAR-LBD) transactivation assays and showed affinities for PPAR in a competitive binding assay.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptors (PPARs) play a key role in differentiation, inflammation, migration, and survival of epidermal keratinocytes. The NF-kappaB has long been known to play pivotal roles in immune and inflammatory responses, and furthermore NF-kappaB has been implicated in the regulation of epidermal homeostasis. Recent studies have established that p65/RelA is a potent repressor of PPARdelta-mediated transactivation in human keratinocytes.

View Article and Find Full Text PDF

Nuclear factor-kappaB (NF-kappaB) is an inducible nuclear transcription factor regulating a range of cellular processes. An imbalance of the DNA binding activity of NF-kappaB may, therefore, be part of the pathophysiological mechanisms in psoriasis. The purpose of this study was to determine the NF-kappaB DNA binding activity in psoriatic skin using three different kappaB sites and to determine how DNA binding activity was modulated by the anti-psoriatic drug calcipotriol.

View Article and Find Full Text PDF