The formation of calcium phosphate under the control of water-soluble polymers is important for understanding bone growth in living organisms. These experiments also have spin-offs in the creation of composite materials, including for regenerative medicine applications. The formation of calcium phosphate (hydroxyapatite) from calcium chloride and diammonium phosphate was studied in the presence of polymers containing carboxyl, amine, and imidazole groups.
View Article and Find Full Text PDFPlastic nanoparticles (NPs) are the final state of plastic degradation in the environment before they disintegrate into low-molecular-weight organic compounds. Unicellular organisms are highly sensitive to the toxic effects of nanoplastics, because they are often capable of phagotrophy but are unable to consume a foreign material such as synthetic plastic. We studied the effect of polystyrene, poly(vinyl chloride), poly(methyl acrylate), and poly(methyl methacrylate) NPs on the photosynthetic dinoflagellate Gymnodinium corollarium Sundström, Kremp et Daugbjerg.
View Article and Find Full Text PDFPlastic particles smaller than 1 μm are considered to be highly dangerous pollutants due to their ability to penetrate living cells. Model experiments on the toxicity of plastics should be correlated with actual concentrations of plastics in natural water. We simulated the natural destruction of polystyrene, polyvinyl chloride, and poly(methyl methacrylate) in experiments on the abrasion of plastics with small stones.
View Article and Find Full Text PDFMany organisms including unicellular (diatoms, radiolaria, and chrysophytes), higher plants (rice and horsetail) and animals (sponges) use silica as a main part of skeletons. The bioavailable form of silicon is silicic acid and the mechanism of silicic acid penetration into living cells is still an enigma. Macropinocytosis was assumed as a key stage of the silicon capture by diatoms but assimilation of monomeric silicic acid by this way requires enormous amounts of water to be passed through the cell.
View Article and Find Full Text PDFThe present work explores the ability of poly(1-vinylimidazole) (PVI) to complex small interfering RNA (siRNA) silencing vascular endothelial growth factor (VEGF) and the in vitro efficiency of the formed complexes in A549 lung cancer cells. The polyplex formed was found to exhibit 66% complexation efficiency. The complexation was confirmed by gel retardation assays, FTIR and thermal analysis.
View Article and Find Full Text PDF