Purpose: To strengthen the sparse evidence on acyclovir (ACV) resistance, especially in recalcitrant herpetic keratitis (HK), by describing the clinical course of 3 genotypically proven ACV resistant HK cases. An overview of mechanisms of resistance and therapeutic options currently available to ophthalmologists is provided based upon recent literature search.
Observations: Resistance to ACV due to known mutations in the gene encoding the viral thymidine kinase was confirmed in 2 cases, and a novel mutation in the UL23 gene (N202K) conferring phenotypical resistance to ACV was discovered in 1 case.
The canonical CysXXXCysXXCys motif is the hallmark of the Radical-SAM superfamily. This motif is responsible for the ligation of a [4Fe-4S] cluster containing a free coordination site available for SAM binding. The five enzymes MoaA, TYW1, MiaB, RimO and LipA contain in addition a second [4Fe-4S] cluster itself bound to three other cysteines and thus also displaying a potentially free coordination site.
View Article and Find Full Text PDFObjective: The aim of the study was to explore the impact of the absence of band fixation on the reoperation rate and to identify other risk factors for long-term complications.
Background: Laparoscopic adjustable gastric banding has been demonstrated to permit important weight loss and comorbidity improvement, but some bands will have to be removed mainly for failure or in case of planned 2-step surgery. Then, the absence of a gastro-gastric suture (GGS) would allow easier band removal.
RimO, a radical-S-adenosylmethionine (SAM) enzyme, catalyzes the specific C methylthiolation of the D89 residue in the ribosomal S protein. Two intact iron-sulfur clusters and two SAM cofactors both are required for catalysis. By using electron paramagnetic resonance, Mössbauer spectroscopies, and site-directed mutagenesis, we show how two SAM molecules sequentially bind to the unique iron site of the radical-SAM cluster for two distinct chemical reactions in RimO.
View Article and Find Full Text PDF