Publications by authors named "E Muanza"

National forest inventories in tropical regions are sparse and have large uncertainty in capturing the physiographical variations of forest carbon across landscapes. Here, we produce for the first time the spatial patterns of carbon stored in forests of Democratic Republic of Congo (DRC) by using airborne LiDAR inventory of more than 432,000 ha of forests based on a designed probability sampling methodology. The LiDAR mean top canopy height measurements were trained to develop an unbiased carbon estimator by using 92 1-ha ground plots distributed across key forest types in DRC.

View Article and Find Full Text PDF