Fanconi anemia (FA), a rare inherited disorder, exhibits a complex phenotype including progressive bone marrow failure, congenital malformations and increased risk of cancers, mainly acute myeloid leukaemia. At the cellular level, FA is characterized by hypersensitivity to DNA cross-linking agents and by high frequencies of induced chromosomal aberrations, a property used for diagnosis. FA results from mutations in one of the eleven FANC (FANCA to FANCJ) genes.
View Article and Find Full Text PDFDNA repair plays a central role in the cellular response to UV. In this work we have studied the response of skin cells (i.e.
View Article and Find Full Text PDFThe genetic disease Fanconi anemia (FA), generally considered to be a DNA repair defect, has also been related to a deficiency in cellular defense against reactive oxygen species (ROS). Results show that mitochondrial matrix densification occurs rapidly and transiently in FA fibroblasts following 8-methoxypsoralen (8-MOP) photoreaction or ultraviolet A (320 to 380 nm) (UVA) irradiation. This effect is oxygen dependent because it is more important under 20 than under 5% oxygen tension.
View Article and Find Full Text PDFPurpose: To investigate whether the adaptive response to ionizing radiation triggered by a low-dose pre-exposure could be due to the activation of the antioxidant defence system.
Materials And Methods: Human lymphoblastoid AHH-1 cells were irradiated with a 0.02 Gy gamma-radiation and 6 h later were exposed to a 3 Gy challenge dose according to a protocol allowing mutagenic adaptation.
Fanconi anemia (FA) is an inherited cancer-susceptibility disorder, characterized by genomic instability, hypersensitivity to DNA cross-linking agents, and a prolonged G2 phase of the cell cycle. We observed a marked dose-dependent accumulation of FA cells in the G2 compartment after treatment with 4,5',8-trimethylpsoralen (Me(3)Pso) in combination with 365 nm irradiation. Using bivariate DNA distribution methodology, we determined the proportion of replicating and arresting S-phase cells and observed that, whereas normal cells arrested DNA replication in the presence of Me(3)Pso cross-links and monoadducts, FA lymphoblasts failed to arrest DNA synthesis.
View Article and Find Full Text PDF