Publications by authors named "E Mothes"

G-quadruplex nucleic acids (G4s) are RNA and DNA secondary structures involved in the regulation of multiple key biological processes. They can be found in telomeres, oncogene promoters, RNAs, but also in viral genomes. Due to their unique structural features, very distinct from the canonical duplexes or single-strands, G4s represent promising pharmacological targets for small molecules, namely G4-ligands.

View Article and Find Full Text PDF

To study the antiparasitic 8-nitroquinolin-2(1H)-one pharmacophore, a series of 31 derivatives was synthesized in 1-5 steps and evaluated in vitro against both Leishmania infantum and Trypanosoma brucei brucei. In parallel, the reduction potential of all molecules was measured by cyclic voltammetry. Structure-activity relationships first indicated that antileishmanial activity depends on an intramolecular hydrogen bond (described by X-ray diffraction) between the lactam function and the nitro group, which is responsible for an important shift of the redox potential (+0.

View Article and Find Full Text PDF

Amyloid-beta peptides (Abeta) and the protein human serum albumin (HSA) interact in vivo. They are both localised in the blood plasma and in the cerebrospinal fluid. Among other functions, HSA is involved in the transport of the essential metal copper.

View Article and Find Full Text PDF

Human serum albumin (HSA) is the most abundant protein in the blood plasma and is involved in the transport of metal ions. Four metal-binding sites with different specificities have been described in HSA: (i) the N-terminal site provided by Asp1, Ala2, and His3, (ii) the site at the reduced Cys34, (iii) site A, including His67 as a ligand, and (iv) the nonlocalized site B. HSA can bind CoII, and HSA was proposed to be involved in CoII transport.

View Article and Find Full Text PDF

The abnormal accumulation of the peptide amyloid-beta in the form of senile (or amyloid) plaques is one of the hallmarks of Alzheimer's disease (AD). Zinc ions have been implicated in AD and plaques formation. Recently, the peptide humanin has been discovered.

View Article and Find Full Text PDF