is a xylem-limited plant pathogenic bacterium that is a menace to the agriculture worldwide threating economically relevant crops such as almond. The pathogen presents a dual lifestyle in the plant xylem, consisting of sessile microbial aggregates and mobile independent cells that move by twitching motility. The latter is essential for the systemic colonization of the host and is mediated through type IV pili.
View Article and Find Full Text PDFNew defense elicitor peptides have been identified which control Xylella fastidiosa infections in almond. Xylella fastidiosa is a plant pathogenic bacterium that has been introduced in the European Union (EU), threatening the agricultural economy of relevant Mediterranean crops such as almond (Prunus dulcis). Plant defense elicitor peptides would be promising to manage diseases such as almond leaf scorch, but their effect on the host has not been fully studied.
View Article and Find Full Text PDFThe ecological fitness of the biological control strains A17 and PM411 was evaluated in different crops, geographical zones, and growing seasons. Both strains (2 g L of dried formulation) were spray-inoculated on apricot trees, peach trees, and grapevines. Depending on the crop, flowers, fruits, and leaves were picked at several sampling time points.
View Article and Find Full Text PDFAlterations in the epigenetic machinery in both tumor and immune cells contribute to bladder cancer (BC) development, constituting a promising target as an alternative therapeutic option. Here, we have explored the effects of a novel histone deacetylase (HDAC) inhibitor CM-1758, alone or in combination with immune checkpoint inhibitors (ICI) in BC. We determined the antitumor effects of CM-1758 in various BC cell lines together with the induction of broad transcriptional changes, with focus on the epigenetic regulation of PD-L1.
View Article and Find Full Text PDFPlant disease control requires novel approaches to mitigate the spread of and losses caused by current, emerging, and re-emerging diseases and to adapt plant protection to global climate change and the restrictions on the use of conventional pesticides. Currently, disease management relies mainly on biopesticides, which are required for the sustainable use of plant-protection products. Functional peptides are candidate biopesticides because they originate from living organisms or are synthetic analogs and provide novel mechanisms of action against plant pathogens.
View Article and Find Full Text PDF