Publications by authors named "E Moczydlowski"

This review glances at the voltage-gated sodium (Na(+)) channel (NaV) from the skewed perspective of natural history and the history of ideas. Beginning with the earliest natural philosophers, the objective of biological science and physiology was to understand the basis of life and discover its intimate secrets. The idea that the living state of matter differs from inanimate matter by an incorporeal spirit or mystical force was central to vitalism, a doctrine based on ancient beliefs that persisted until the last century.

View Article and Find Full Text PDF

Two classes of small homologous basic proteins, mamba snake dendrotoxins (DTX) and bovine pancreatic trypsin inhibitor (BPTI), block the large conductance Ca(2+)-activated K(+) channel (BKCa, KCa1.1) by production of discrete subconductance events when added to the intracellular side of the membrane. This toxin-channel interaction is unlikely to be pharmacologically relevant to the action of mamba venom, but as a fortuitous ligand-protein interaction, it has certain biophysical implications for the mechanism of BKCa channel gating.

View Article and Find Full Text PDF

Local anesthetics and related drugs block ionic currents of Na (+) , K (+) and Ca ( 2+) conducted across the cell membrane by voltage-dependent ion channels. Many of these drugs bind in the permeation pathway, occlude the pore and stop ion movement. However channel-blocking drugs have also been associated with decreased membrane stability of certain tetrameric K (+) channels, similar to the destabilization of channel function observed at low extracellular K (+) concentration.

View Article and Find Full Text PDF

In many respects tetrodotoxin (TTX) is the quintessential natural toxin. It is unequivocally toxic to mammals with LD(50) values for mice in the range of 10 μg/kg (intraperitoneal), 16 μg/kg (subcutaneous), and 332 μg/kg (oral) (Kao, 1966). Its biothreat status is recognized by its listing as a "Select Agent" by the US Department of Health and Human Services which includes regulated agents "determined to have the potential to pose a severe threat to both human and animal health" (http://www.

View Article and Find Full Text PDF

Voltage-gated Na(+) channels (NaV channels) are specifically blocked by guanidinium toxins such as tetrodotoxin (TTX) and saxitoxin (STX) with nanomolar to micromolar affinity depending on key amino acid substitutions in the outer vestibule of the channel that vary with NaV gene isoforms. All NaV channels that have been studied exhibit a use-dependent enhancement of TTX/STX affinity when the channel is stimulated with brief repetitive voltage depolarizations from a hyperpolarized starting voltage. Two models have been proposed to explain the mechanism of TTX/STX use dependence: a conformational mechanism and a trapped ion mechanism.

View Article and Find Full Text PDF