Oxidative stress processes play a major role in the development of the complications associated with diabetes and other diseases via non-enzymatic glycation, the hexosamine pathway, the polyol pathway and diacylglycerol-protein kinase C. Oxidative stress may lead to the production of hydroxyl free radicals, which can attack macromolecules, such as lipids, nucleic acids or amino acids. Phenylalanine (Phe) can be enzymatically converted to the physiological para-tyrosine (p-Tyr); however, a hydroxyl free radical attack on Phe may yield meta- and ortho-tyrosine (m- and o-Tyr, respectively) in addition to p-Tyr.
View Article and Find Full Text PDFPrevious studies have shown that in diabetes mellitus, insulin-induced relaxation of arteries is impaired and the level of ortho-tyrosine (o-Tyr), an oxidized amino acid is increased. Thus, we hypothesized that elevated vascular level of o-Tyr contributes to the impairment of insulin-induced vascular relaxation. Rats were fed with o-Tyr for 4 weeks.
View Article and Find Full Text PDFBackground/aims: Erythropoietin-resistance is an unsolved concern in the treatment of renal anaemia. We aimed to investigate the possible role of ortho- and meta-tyrosine - the hydroxyl free radical products of L-phenylalanine - in the development of erythropoietin-resistance.
Methods: TF-1 erythroblast cell line was used.
Objectives Patients with end-stage renal failure (ESRF) treated with erythropoiesis-stimulating agents (ESAs) are often ESA-hyporesponsive associated with free radical production. Hydroxyl free radical converts phenylalanine into ortho-tyrosine, while physiological isomer para-tyrosine is formed enzymatically, mainly in the kidney. Production of 'para-tyrosine' is decreased in ESRF and it can be replaced by ortho-tyrosine in proteins.
View Article and Find Full Text PDFRationale: The oxidative state has been implicated in the signaling of various vasomotor functions, yet its role regarding the vasomotor action of insulin is less known.
Objective: To investigate the insulin-evoked relaxations of consecutive arterial segments of different oxidative state and the role of extracellular signal-regulated kinase (ERK) pathway.
Methods And Results: The oxidative state, as assessed by the level of ortho-tyrosine, was higher in the thoracic aorta of rats than in the abdominal aorta, and was the lowest in the femoral artery.