Publications by authors named "E Mengelle"

The removal efficiency of nine pharmaceutical compounds from primary sludge was evaluated in two different operating conditions: (i) in conventional Mesophilic Anaerobic Digestion (MAD) alone and (ii) in a co-treatment process combining Mesophilic Anaerobic Digestion and a Thermophilic Aerobic Reactor (MAD-TAR). The pilot scale reactors were fed with primary sludge obtained after decantation of urban wastewater. Concerning the biodegradation of organic matter, thermophilic aeration increased solubilization and hydrolysis yields of digestion, resulting in a further 26% supplementary removal of chemical oxygen demand (COD) in MAD-TAR process compared to the conventional mesophilic anaerobic digestion.

View Article and Find Full Text PDF

The removal of polycyclic aromatic hydrocarbons (PAHs) in activated sludge was evaluated using two laboratory-scale bioreactors, coupled or not with a disintegration system (sonication). Mass balances performed on each system underlined that PAHs removal was significantly improved after sludge disintegration, especially for the higher molecular weight PAHs studied, which tended to adsorb to suspended matter. A model was developed in order to study the effect of sludge disintegration on the content of dissolved and colloidal matter (DCM), and to predict the potential impacts on PAHs availability and degradation.

View Article and Find Full Text PDF

The partitioning between solids and the aqueous phase largely controls the fate of PAH compounds in biological treatment. The prediction of PAH sorption behaviour into activated sludge was investigated here. The suitability of a three-compartment model to describe partitioning in such a complex matrix was first evaluated by adding increasing quantities of dissolved and colloidal matter (DCM) (from 0 to 34.

View Article and Find Full Text PDF

Up to half of the organic fraction of an urban wastewater is made up of particulate settleable solids (PSS). In activated sludge process (AS) this material is rapidly adsorbed on to microbial flocs but is only slowly and partially degraded. To better understand and predict the degradation kinetics observed, a determination of the proportion of hydrolytic bacteria is required.

View Article and Find Full Text PDF