Heart failure (HF) prevalence is rising due to reduced early mortality and demographic change. Relaxin (RLN) mediates protective effects in the cardiovascular system through Relaxin-receptor 1 (RXFP1). Cardiac overexpression of RXFP1 with additional RLN supplementation attenuated HF in the pressure-overload transverse aortic constriction (TAC) model.
View Article and Find Full Text PDFRecurrent episodes of decompensated heart failure (HF) represent an emerging cause of hospitalizations in developed countries with an urgent need for effective therapies. Recently, the pregnancy-related hormone relaxin (RLN) was found to mediate cardio-protective effects and act as a positive inotrope in the cardiovascular system. RLN binds to the RLN family peptide receptor 1 (RXFP1), which is predominantly expressed in atrial cardiomyocytes.
View Article and Find Full Text PDFSystems glycobiology aims to provide models and analysis tools that account for the biosynthesis, regulation, and interactions with glycoconjugates. To facilitate these methods, there is a need for a clear glycan representation accessible to both computers and humans. Linear Code, a linearized and readily parsable glycan structure representation, is such a language.
View Article and Find Full Text PDFThe clinical use of the chemotherapeutic doxorubicin (Dox) is limited by cardiotoxic side-effects. One of the early Dox effects is induction of a sarcoplasmic reticulum (SR) Ca2+ leak. The chaperone Glucose regulated protein 78 (GRP78) is important for Ca2+ homeostasis in the endoplasmic reticulum (ER)-the organelle corresponding to the SR in non-cardiomyocytes-and has been shown to convey resistance to Dox in certain tumors.
View Article and Find Full Text PDFThe increase in protein activity and upregulation of G-protein coupled receptor kinase 2 (GRK2) is a hallmark of cardiac stress and heart failure. Inhibition of GRK2 improved cardiac function and survival and diminished cardiac remodeling in various animal heart failure models. The aim of the present study was to investigate the effects of GRK2 on cardiac hypertrophy and dissect potential molecular mechanisms.
View Article and Find Full Text PDF