Publications by authors named "E Mateo-Marti"

The development of rapid, accurate, sensitive, and low-cost diagnostic methods for COVID-19 detection in real-time is the unique way to control infection sources and monitor illness progression. In this work, we propose an electrochemical biosensor for the rapid and accuracy diagnosis of COVID-19, through the determination of ORF specific sequence. The biosensor is based on the immobilization of a thiolated sequence partially complementary (domain 1) to ORF on gold screen-printed electrodes and the use of bifunctional Au@Pt/Au core@shell nanoparticles modified with a second thiolated sequence partially complementary to ORF (domain 2) as electrochemical indicator of the hybridization of DNA sequences.

View Article and Find Full Text PDF

Prebiotic chemistry one-pot reactions, such as HCN-derived polymerizations, have been used as stimulating starting points for the generation of new multifunctional materials due to the simplicity of the processes, use of water as solvent, and moderate thermal conditions. Slight experimental variations in this special kind of polymerization tune the final properties of the products. Thus, herein, the influence of NHCl on the polymerization kinetics of cyanide under hydrothermal conditions and on the macrostructures and properties of this complex system is explored.

View Article and Find Full Text PDF

Space experiments are a technically challenging but a scientifically important part of astrobiology and astrochemistry research. The International Space Station (ISS) is an excellent example of a highly successful and long-lasting research platform for experiments in space, that has provided a wealth of scientific data over the last two decades. However, future space platforms present new opportunities to conduct experiments with the potential to address key topics in astrobiology and astrochemistry.

View Article and Find Full Text PDF

The role of minerals in the origin of life and prebiotic evolution remains unknown and controversial. Mineral surfaces have the potential to facilitate prebiotic polymerization due to their ability to adsorb and concentrate biomolecules that subsequently can catalyse reactions; however, the precise nature of the interaction between the mineral host and the guest biomolecule still needs to be understood. In this context, we spectroscopically characterized, using infrared, X-ray photoemission spectroscopy (XPS) and X-ray diffraction (XRD) techniques, the interaction between L-proline and montmorillonite, olivine, iron disulphide, and haematite (minerals of prebiotic interest), by evaluating their interaction from a liquid medium.

View Article and Find Full Text PDF