Seas worldwide are threatened by an emerging source of pollution as millions of tons of warfare materials were dumped after the World Wars. As their metal shells are progressively corroding, energetic compounds (EC) leak out and distribute in the marine environment. EC are taken up by aquatic organisms and pose a threat to both the marine ecosphere and the human seafood consumer because of their toxicity and potential carcinogenicity.
View Article and Find Full Text PDFThe explosive compound 2,4,6-trinitrotoluene (TNT) is well known as a major component of munitions. In addition to its potential carcinogenicity and mutagenicity in humans, recent reports have highlighted TNT toxicities in diverse organisms due to its occurrence in the environment. These toxic effects have been linked to the intracellular metabolism of TNT, which is generally characterised by redox cycling and the generation of noxious reactive molecules.
View Article and Find Full Text PDFIt is well known that anthracene is a persistent organic pollutant. Among the four natural polycyclic aromatic hydrocarbons (PAHs) degrading strains, Comamonas testosterone (CT1) was selected as the strain with the highest degradation efficiency. In the present study, prokaryotic transcriptome analysis of CT1 revealed an increase in a gene that encodes tryptophane-2,3-dioxygenase (T23D) in the anthracene and erythromycin groups compared to CK.
View Article and Find Full Text PDF