Carbon and oxygen burning reactions, in particular, ^{12}C+^{12}C fusion, are important for the understanding and interpretation of the late phases of stellar evolution as well as the ignition and nucleosynthesis in cataclysmic binary systems such as type Ia supernovae and x-ray superbursts. A new measurement of this reaction has been performed at the University of Notre Dame using particle-γ coincidence techniques with SAND (a silicon detector array) at the high-intensity 5U Pelletron accelerator. New results for ^{12}C+^{12}C fusion at low energies relevant to nuclear astrophysics are reported.
View Article and Find Full Text PDFFusion cross sections were measured for the exotic proton-halo nucleus ⁸B incident on a ⁵⁸Ni target at several energies near the Coulomb barrier. This is the first experiment to report on the fusion of a proton-halo nucleus. The resulting excitation function shows a striking enhancement with respect to expectations for normal projectiles.
View Article and Find Full Text PDFReaction products from the interaction of 6He with 209Bi have been measured at energies near the Coulomb barrier. A 4He group of remarkable intensity, which dominates the total reaction cross section, has been observed. The angular distribution of the group suggests that it results primarily from a direct nuclear process.
View Article and Find Full Text PDF