Publications by authors named "E Marmar"

The SPARC tokamak is a high-field, Bt0 ∼12 T, medium-sized, R0 = 1.85 m, tokamak that is presently under construction in Devens, MA, led by Commonwealth Fusion Systems. It will be used to de-risk the high-field tokamak path to a fusion power plant and demonstrate the commercial viability of fusion energy.

View Article and Find Full Text PDF

Filamentary structures, also known as blobs, are a prominent feature of turbulence and transport at the edge of magnetically confined plasmas. They cause cross-field particle and energy transport and are, therefore, of interest in tokamak physics and, more generally, nuclear fusion research. Several experimental techniques have been developed to study their properties.

View Article and Find Full Text PDF

We present the design and operation of a suite of Gas Puff Imaging (GPI) diagnostic systems installed on the Tokamak à Configuration Variable (TCV) for the study of turbulence in the plasma edge and Scrape-Off-Layer (SOL). These systems provide the unique ability to simultaneously collect poloidal 2D images of plasma dynamics at the outboard midplane, around the X-point, in both the High-Field Side (HFS) and Low-Field Side (LFS) SOL, and in the divertor region. We describe and characterize an innovative control system for deuterium and helium gas injection, which is becoming the default standard for the other gas injections at TCV.

View Article and Find Full Text PDF

The analysis of turbulence in plasmas is fundamental in fusion research. Despite extensive progress in theoretical modeling in the past 15 years, we still lack a complete and consistent understanding of turbulence in magnetic confinement devices, such as tokamaks. Experimental studies are challenging due to the diverse processes that drive the high-speed dynamics of turbulent phenomena.

View Article and Find Full Text PDF

Optimized operation of fusion devices demands detailed understanding of plasma transport, a problem that must be addressed with advances in both measurement and data analysis techniques. In this work, we adopt Bayesian inference methods to determine experimental particle transport, leveraging opportunities from high-resolution He-like ion spectra in a tokamak plasma. The Bayesian spectral fitting code is used to analyze resonance (w), forbidden (z), intercombination (x, y), and satellite (k, j) lines of He-like Ca following laser blow-off injections on Alcator C-Mod.

View Article and Find Full Text PDF