Publications by authors named "E Mareev"

Radiographic imaging using X-rays is a tool for basic research and applications in industry, materials science, and medical diagnostics. In this article, we present a novel approach for the generation of X-rays using a vacuum-free microplasma by femtosecond fiber laser. By tightly focusing a laser pulse onto a micrometer-sized solid density near-surface plasma from a rotating copper target, we demonstrate the generation of Cu K-photons (8-9 keV) with high yield ∼ 1.

View Article and Find Full Text PDF

Alternating magnetic fields (MF) with Schumann resonance frequencies accompanied the development of living organisms throughout evolution, but today it remains unclear whether they can have a special biological effect in comparison with surrounding non-resonant frequencies. This work shows some stimulating effect of extremely low-frequency MFs on morphometric parameters and the activity of physiological processes in wheat ( L.).

View Article and Find Full Text PDF

Extremely low-frequency magnetic fields are thought to be capable of modulating the resistance of plants to adverse factors, particularly drought. Magnetic fields in this frequency range occur in nature in connection with so-called Schumann resonances, excited by lightning discharges in the Earth-ionosphere cavity. The aim of this work was to identify the influence of a magnetic field with a frequency of 14.

View Article and Find Full Text PDF

Being the second most abundant element on earth after oxygen, silicon remains the working horse for key technologies for the years. Novel photonics platform for high-speed data transfer and optical memory demands higher flexibility of the silicon modification, including on-chip and in-bulk inscription regimes. These are deepness, three-dimensionality, controllability of sizes and morphology of created modifications.

View Article and Find Full Text PDF

The advent of free-electron lasers opens new routes for experimental high-pressure physics, which allows studying dynamics of condensed matter with femtosecond resolution. A rapid compression, that can be caused by laser-induced shock impact, leads to the cascade of high-pressure phase transitions. Despite many decades of study, a complete understanding of the lattice response to such a compression remains elusive.

View Article and Find Full Text PDF