In 1996, we published a review article (Marder E, Calabrese RL. 76: 687-717, 1996) describing the state of knowledge about the structure and function of the central pattern-generating circuits important for producing rhythmic behaviors. Although many of the core questions persist, much has changed since 1996.
View Article and Find Full Text PDFThe knowledge in our brains, not in our phones, is necessary for creative thinking and the pursuit of truth.
View Article and Find Full Text PDFJMIR Public Health Surveill
October 2024
Background: During the peak of the winter 2020-2021 surge, the number of weekly reported COVID-19 outbreaks in Washington State was 231; the majority occurred in high-priority settings such as workplaces, community settings, and schools. The Washington State Department of Health used automated address matching to identify clusters at health care facilities. No other systematic, statewide outbreak detection methods were in place.
View Article and Find Full Text PDFMotor systems operate over a range of frequencies and relative timing (phase). We studied the role of the hyperpolarization-activated inward current (I) in regulating these features in the pyloric rhythm of the stomatogastric ganglion (STG) of the crab, as temperature was altered from 11°C to 21°C. Under control conditions, rhythm frequency increased monotonically with temperature, while the phases of the pyloric dilator (PD), lateral pyloric (LP), and pyloric (PY) neurons remained constant.
View Article and Find Full Text PDFDegeneracy is defined as multiple sets of solutions that can produce very similar system performance. Degeneracy is seen across phylogenetic scales, in all kinds of organisms. In neuroscience, degeneracy can be seen in the constellation of biophysical properties that produce a neuron's characteristic intrinsic properties and/or the constellation of mechanisms that determine circuit outputs or behavior.
View Article and Find Full Text PDF