J Scleroderma Relat Disord
January 2025
Cardiovascular complications are observed in up to one-third of patients with systemic sclerosis (SSc). Early identification and management of SSc-associated primary cardiac disease is often challenging, given the complex disease pathophysiology, significant variability in clinical presentation, and scarce disease-modifying therapeutics. Here, we review the molecular mechanisms involved in SSc-associated cardiac disease pathogenesis, novel diagnostic tools and emerging therapies.
View Article and Find Full Text PDFTY1, a synthetic non-coding RNA (ncRNA) bioinspired by small Y RNAs abundant in extracellular vesicles (EVs), decreases cGAS/STING activation in myocardial infarction and thereby attenuates inflammation. Motivated by the concept that heart failure with preserved ejection fraction (HFpEF) is a systemic inflammatory disease, we tested TY1 in a murine model of HFpEF. Intravenous TY1, packaged in a transfection reagent, reversed the cardiac and systemic manifestations of HFpEF in two-hit obese-hypertensive mice, without inducing weight loss.
View Article and Find Full Text PDFAll Food and Drug Administration-approved noncoding RNA (ncRNA) drugs (n≈20) target known disease-causing molecular pathways by mechanisms such as antisense. In a fortuitous evolution of work on regenerative medicine, my coworkers and I inverted the RNA drug discovery process: first we identified natural disease-modifying ncRNAs, then used them as templates for new synthetic RNA drugs. Mechanism was probed only after bioactivity had been demonstrated.
View Article and Find Full Text PDFUnlabelled: Noncoding RNAs (ncRNAs) are increasingly recognized as bioactive. Here we report the development of TY1, a synthetic ncRNA bioinspired by a naturally-occurring human small Y RNA with immunomodulatory properties. TY1 upregulates TREX1, an exonuclease that rapidly degrades cytosolic DNA.
View Article and Find Full Text PDF