Publications by authors named "E M Vinnik"

Food ingestion is one of the defining behaviours of all animals, but its quantification and analysis remain challenging. This is especially the case for feeding behaviour in small, genetically tractable animals such as Drosophila melanogaster. Here, we present a method based on capacitive measurements, which allows the detailed, automated and high-throughput quantification of feeding behaviour.

View Article and Find Full Text PDF

Because acoustic landscapes are complex and rapidly changing, auditory systems have evolved mechanisms that permit rapid detection of novel sounds, sound source segregation, and perceptual restoration of sounds obscured by noise. Perceptual restoration is particularly important in noisy environments because it allows organisms to track sounds over time even when they are masked. The continuity illusion is a striking example of perceptual restoration with sounds perceived as intact even when parts of them have been replaced by gaps and rendered inaudible by being masked by an extraneous sound.

View Article and Find Full Text PDF

To investigate how hippocampal neurons code behaviorally salient stimuli, we recorded from neurons in the CA1 region of hippocampus in rats while they learned to associate the presence of sound with water reward. Rats learned to alternate between two reward ports at which, in 50% of the trials, sound stimuli were presented followed by water reward after a 3-s delay. Sound at the water port predicted subsequent reward delivery in 100% of the trials and the absence of sound predicted reward omission.

View Article and Find Full Text PDF

To investigate how hippocampal neurons encode sound stimuli, and the conjunction of sound stimuli with the animal's position in space, we recorded from neurons in the CA1 region of hippocampus in rats while they performed a sound discrimination task. Four different sounds were used, two associated with water reward on the right side of the animal and the other two with water reward on the left side. This allowed us to separate neuronal activity related to sound identity from activity related to response direction.

View Article and Find Full Text PDF

Important sounds can be easily missed or misidentified in the presence of extraneous noise. We describe an auditory illusion in which a continuous ongoing tone becomes inaudible during a brief, non-masking noise burst more than one octave away, which is unexpected given the frequency resolution of human hearing. Participants strongly susceptible to this illusory discontinuity did not perceive illusory auditory continuity (in which a sound subjectively continues during a burst of masking noise) when the noises were short, yet did so at longer noise durations.

View Article and Find Full Text PDF