This work aims to compare the capability of vibration attenuation by standard elastomeric polymers, and by the new anomalously damping nematic liquid crystal elastomer. We use the most mainstream materials in both categories, and design two testing platforms: the ASTM-standard constrained layer plate resonance geometry, and the attenuation of resonances in a commercial device (electric drill) where the damping polymers were inserted into the casing. In the standard plate resonance testing, we find that LCE outperforms all standard damping materials, moreover, it brings the vibrating plate into the overdamped condition, which is unique for a non-fluid dissipative system.
View Article and Find Full Text PDFNematic liquid crystal elastomers (LCEs) have anomalously high vibration damping, and it has been assumed that this is the cause of their anomalously high-pressure-sensitive adhesion (PSA). Here, we investigate the mechanism behind this enhanced PSA by first preparing thin adhesive tapes with LCE of varying cross-linking densities, characterizing their material and surface properties, and then studying the adhesion characteristics with a standard set of 90° peel, lap shear, and probe tack tests. The study confirms that the enhanced PSA is only present in (and due to) the nematic phase of the elastomer, and the strength of bonding takes over 24 h to fully reach its maximum value.
View Article and Find Full Text PDFThe effect of elastomeric damping pads, softening the collision of hard objects, is investigated comparing the reference silicone elastomer and the polydomain nematic liquid crystalline elastomer, which has a far superior internal dissipation mechanism. We specifically focus not just on the energy dissipation, but also on the momentum conservation and transfer during the collision, because the latter determines the force exerted on the target and/or the impactor-and it is the force that does the damage during the short time of an impact, while the energy might be dissipated on a much longer time scale. To better assess the momentum transfer, we compare the collision with a very heavy object and the collision with a comparable mass, when some of the impact momentum is retained in the target receding away from the collision.
View Article and Find Full Text PDFActive fabrics, responding autonomously to environmental changes, are the "Holy Grail" of the development of smart textiles. Liquid crystal elastomers (LCEs) promise to be the base materials for large-stroke reversible actuation. The mechanical behavior of LCEs matches almost exactly the human muscle.
View Article and Find Full Text PDFCadherins mediate cell-cell adhesion and help the cell determine its shape and function. Here we study collective cadherin organization and interactions within cell-cell contact areas, and find the cadherin density at which a 'gas-liquid' phase transition occurs, when cadherin monomers begin to aggregate into dense clusters. We use a 2D lattice model of a cell-cell contact area, and coarse-grain to the continuous number density of cadherin to map the model onto the Cahn-Hilliard coarsening theory.
View Article and Find Full Text PDF