Multicomponent insulin-containing microparticles are prepared by layer-by-layer assembly of dextran sulfate and chitosan on the core of protein-polyanion complex with or without protease inhibitors. Oral bioavailability of the encapsulated insulin is improved due to the cumulative effect of each component. A physico-chemical study shows that the particle design allows adjustment of the pH-dependent profile of the insulin release, as well as mucoadhesive properties and Ca(2+) binding ability of the microparticles.
View Article and Find Full Text PDFTernary interpolyelectrolyte complexes of insulin with biodegradable synthetic cationic polymer, poly(methylaminophosphazene) hydrochloride (PMAP), and dextran sulfate (DS) were investigated by means of turbidimetry, dynamic light scattering, phase analysis, and high-sensitivity differential scanning calorimetry. Formation of ternary insoluble stoichiometric Insulin-PMAP-DS complexes was detected under conditions imitating the human gastric environment (pH 2, 0.15 M NaCl).
View Article and Find Full Text PDFMicroparticles containing recombinant human insulin and its analogs aspart and lispro were prepared using an alternate adsorption of chitosan and dextran sulfate from solutions onto microaggregates of protein-dextran sulfate insoluble complex. The following properties of polyelectrolyte hormone-containing microparticles were studied: pH stability, surface charge, mucoadhesive properties, Ca(2+) binding, degradation under the influence of proteases (trypsin, chymotrypsin). The influence of the self-association ability of encapsulated insulins on the form of protein releasing from microparticles was studied.
View Article and Find Full Text PDFA real-time PCR procedure is proposed for assaying E. coli residual DNA in the pharmaceutical substance of human recombinant insulin. For the quantitative analysis of the DNA content, an amplification of fragments of the bla gene plasmid DNA and E.
View Article and Find Full Text PDFA preparation of nanocomplexes containing recombinant proteins (interferons alpha2b and beta1b, insulin, and human granulocyte colony stimulating factor) and natural polysialic acid (PSA) has been described. The incorporation of protein into the complex changes its electrophoretic mobility. Atomic force microscopy reveals the average size of 23-kD insulin complexes with PSA of 10-20 nm and demonstrates that more than 60% of glycopolymer molecules carry a single protein molecule.
View Article and Find Full Text PDF