Plant Signal Behav
December 2024
and , the causative agents of bacterial wilt, ranks as the second most devastating phytopathogens, affecting over 310 plant species and causing substantial economic losses worldwide. and infect plants through the underground root system, where it interacts with both the host and the surrounding microbiota and multiply in the xylem where bacteria cell and its polysaccharide product block the water transportation from root to aboveground. Currently, effective control methods are limited, as resistance genes are unavailable and antibiotics prove ineffective.
View Article and Find Full Text PDFIntroduction: Abdominal obesity increases the risk of developing ovarian cancer but the molecular mechanisms of how obesity supports ovarian cancer development remain unknown. Here we investigated the impact of obesity on the immune cell and gene expression profiles of distinct abdominal tissues, focusing on the peritoneal serous fluid (PSF) and the omental fat band (OFB) as critical determinants for the dissemination of ovarian metastases and early metastatic events within the peritoneal cavity.
Methods: Female C57BL/6 mice were fed a low-fat (LFD) or a high-fat diet (HFD) for 12 weeks until the body weights in the HFD group were significantly higher and the mice displayed an impaired glucose tolerance.
The aggregation of cancer cells provides a survival signal for disseminating cancer cells; however, the underlying molecular mechanisms have yet to be elucidated. Using qPCR gene arrays, this study investigated the changes in cancer-specific genes as well as genes regulating mitochondrial quality control, metabolism, and oxidative stress in response to aggregation and hypoxia in our progressive ovarian cancer models representing slow- and fast-developing ovarian cancer. Aggregation increased the expression of anti-apoptotic, stemness, epithelial-mesenchymal transition (EMT), angiogenic, mitophagic, and reactive oxygen species (ROS) scavenging genes and functions, and decreased proliferation, apoptosis, metabolism, and mitochondrial content genes and functions.
View Article and Find Full Text PDF