The aim of this study was to carry out diagnosis about the destination given to the urban solid wastes in AMAI-SC region, which has fourteen cities. It was applied questionnaires to the city halls, and visits to map active and inactive dumps, controlled and sanitary landfill. It was investigated: the existence of fences, monitoring and collecting of gas and leachate, if they were next to the superficial waters, the presence of animals or collectors.
View Article and Find Full Text PDFGas6 is a growth factor membrane of the vitamin K-dependent family of proteins which is preferentially expressed in quiescent cells. Gas6 was identified as the ligand for Axl tyrosine kinase receptor family. Consistent with this, Gas6 was previously reported to induce cell cycle re-entry of serum-starved NIH3T3 cells and to prevent cell death after complete growth factor withdrawal, the survival effect being uncoupled from Gas6-induced mitogenesis.
View Article and Find Full Text PDFQuiescent mammalian fibroblasts can be induced to reenter the cell cycle by growth factors and oncoproteins. We studied the pathway(s) through which v-Src, the oncogenic tyrosine kinase encoded by the v-src oncogene of Rous sarcoma virus, forces serum-starved NIH3T3 cells to enter S-phase. To this purpose, we isolated and characterized a polyclonal population of NIH3T3 cells transformed by the MR31 retroviral vector, encoding G418 resistance and the v-src temperature-sensitive allele from the mutant ts LA31 PR-A.
View Article and Find Full Text PDFGas6 is a secreted protein previously identified as the ligand of the Axl receptor tyrosine kinase. We have shown that Gas6 is able to induce cell cycle reentry of serum-starved NIH 3T3 cells and to efficiently prevent apoptosis after complete growth factor removal, a survival effect uncoupled from Gas6-induced mitogenesis. Here we report that the mitogenic effect of Gas6 requires phosphatidylinositol 3-kinase (PI3K) activity since it is abrogated both by the specific inhibitor wortmannin and by overexpression of the dominant negative P13K p85 subunit.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 1997
The involvement of p53 in regulating diverse cellular processes dictates that it must respond to multiple signaling mechanisms, thus coordinating the response to various "stress conditions." Genotoxic stress has served as a paradigm to dissect the transactivation-dependent branch of the pathway by which p53 can induce growth arrest. Alternate mechanisms have been invoked to explain transactivation-independent effects of p53, especially in the context of apoptosis.
View Article and Find Full Text PDF