Publications by authors named "E M Ramser"

Impairment of axonal transport is an early pathologic event that precedes neurotoxicity in Alzheimer's disease (AD). Soluble amyloid-β oligomers (AβOs), a causative agent of AD, activate intracellular signaling cascades that trigger phosphorylation of many target proteins, including tau, resulting in microtubule destabilization and transport impairment. Here, we investigated how KIF1A, a kinesin-3 family motor protein required for the transport of neurotrophic factors, is impaired in mouse hippocampal neurons treated with AβOs.

View Article and Find Full Text PDF

The original version of this article unfortunately contained a mistake in the presentation of Fig. 1 in both the PDF and HTML versions of this manuscript [1]. In the right panel of the corrected Fig.

View Article and Find Full Text PDF

Introduction: Synaptic dysfunction and intracellular transport defects are early events in Alzheimer's disease (AD). Extracellular amyloid β (Aβ) oligomers cause spine alterations and impede the transport of proteins and organelles such as brain-derived neurotrophic factor (BDNF) and mitochondria that are required for synaptic function. Meanwhile, intraneuronal accumulation of Aβ precedes its extracellular deposition and is also associated with synaptic dysfunction in AD.

View Article and Find Full Text PDF

Disruption of fast axonal transport (FAT) is an early pathological event in Alzheimer's disease (AD). Soluble amyloid-β oligomers (AβOs), increasingly recognized as proximal neurotoxins in AD, impair organelle transport in cultured neurons and transgenic mouse models. AβOs also stimulate hyperphosphorylation of the axonal microtubule-associated protein, tau.

View Article and Find Full Text PDF