Stress granules (SG) are part of a cellular protection mechanism where untranslated messenger RNAs and RNA-binding proteins are stored upon conditions of cellular stress. Compositional variations due to qualitative or quantitative protein changes can disrupt their functionality and alter their structure. This is the case of different forms of amyotrophic lateral sclerosis (ALS) where a causative link has been proposed between the cytoplasmic de-localization of mutant proteins, such as FUS (Fused in Sarcoma), and the formation of cytotoxic inclusions.
View Article and Find Full Text PDFSingle-particle tracking techniques enable investigation of the complex functions and interactions of individual particles in biological environments. Many such techniques exist, each demonstrating trade-offs between spatiotemporal resolution, spatial and temporal range, technical complexity, and information content. To mitigate these trade-offs, we enhanced a confocal laser scanning microscope with an asynchronous read-out single-photon avalanche diode array detector.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease due to gradual motoneurons (MN) degeneration. Among the processes associated to ALS pathogenesis, there is the formation of cytoplasmic inclusions produced by aggregation of mutant proteins, among which the RNA binding protein FUS. Here we show that, in neuronal cells and in iPSC-derived MN expressing mutant FUS, such inclusions are significantly reduced in number and dissolve faster when the RNA mA content is diminished.
View Article and Find Full Text PDFBiomolecular condensates serve as membrane-less compartments within cells, concentrating proteins and nucleic acids to facilitate precise spatial and temporal orchestration of various biological processes. The diversity of these processes and the substantial variability in condensate characteristics present a formidable challenge for quantifying their molecular dynamics, surpassing the capabilities of conventional microscopy. Here, we show that our single-photon microscope provides a comprehensive live-cell spectroscopy and imaging framework for investigating biomolecular condensation.
View Article and Find Full Text PDF