Publications by authors named "E M Koski"

Introduction: AI is big and moving fast into healthcare, creating opportunities and risks. However, current approaches to governance focus on high-level principles rather than tailored recommendations for specific domains like consumer health. This gap risks unintended consequences from generic guidelines misapplied across contexts and from providing answers before agreeing on the questions.

View Article and Find Full Text PDF

Although corticosteroids are an important treatment for inflammatory bowel disease (IBD) patients, many subjects develop dependence, leading to serious long-term side effects. We applied causal inference analyses to investigate the length of steroid use on reoperations in IBD patients. We identified subjects in the UK Biobank general practice dataset with at least one major GI surgery and followed them for at least 5 years to evaluate subsequent operations.

View Article and Find Full Text PDF
Article Synopsis
  • Using artificial intelligence (AI) in healthcare can help doctors make better decisions but has challenges like ensuring it’s safe and fair.
  • The paper suggests making clear rules and methods to develop and test AI systems for patient safety.
  • A big meeting with over 200 experts took place to find solutions on using AI in healthcare, leading to important recommendations for better AI systems.
View Article and Find Full Text PDF

This paper addresses the challenge of binary relation classification in biomedical Natural Language Processing (NLP), focusing on diverse domains including gene-disease associations, compound protein interactions, and social determinants of health (SDOH). We evaluate different approaches, including fine-tuning Bidirectional Encoder Representations from Transformers (BERT) models and generative Large Language Models (LLMs), and examine their performance in zero and few-shot settings. We also introduce a novel dataset of biomedical text annotated with social and clinical entities to facilitate research into relation classification.

View Article and Find Full Text PDF

Chronic gastrointestinal (GI) conditions, such as inflammatory bowel diseases (IBD), offer a promising opportunity to create classification systems that can enhance the accuracy of predicting the most effective therapies and prognosis for each patient. Here, we present a novel methodology to explore disease subtypes using our open-sourced BiomedSciAI toolkit. Applying methods available in this toolkit on the UK Biobank, including subpopulation-based feature selection and multi-dimensional subset scanning, we aimed to discover unique subgroups from GI surgery cohorts.

View Article and Find Full Text PDF